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ABSTRACT

Seismic waves propagating in an anelastic medium undergo
phase and amplitude distortions. Although these effects may
be compensated for during imaging processes, a background
Q-model is generally required for their successful application.
We have developed a new approach to the Q-estimation prob-
lem, which is fundamentally related to the basic physical prin-
ciple of time reversal. It is based on back-propagating recorded
traces to their known source location using the reverse tomo-
graphic equation. This equation is a ray approximation of vis-
coelastic wave propagation. It is applied assuming a known and
correct velocity model. We subsequently measure consistency
between spectral shapes of traces that were back-propagated us-
ing the tomographic equation. We formulate an inverse problem
using this consistency as an objective function. In conventional

inversion, on the contrary, the discrepancy between modeled
and recorded data, or some data characteristics, is minimized.
The inverse problem is solved by ant-colony optimization, a
global optimization approach, to avoid local minima present
in the objective function. This method does not require knowl-
edge of the source function and uses the full spectrum rather
than its parametric reduction. Through synthetic and field
cross-hole examples, we illustrate its accuracy and sensitivity
in inverting for complex attenuation models. In the synthetic
case, we also compare reconstructed source consistency with
the conventional centroid frequency shift objective function.
The latter displays poor resolution when recovering complex Q
structures. We determine that the reconstructed source-consis-
tency approach should be used as a part of an iterative workflow,
possibly yielding initial models for a joint velocity and Q
inversion.

INTRODUCTION

The subsurface medium is anelastic in nature, and seismic waves
propagating through it lose some of their energy to heat, inducing
amplitude and phase distortion (Aki and Richards, 2002). Such at-
tenuation effects can be quantified using the quality factor Q, and
they account for traveled distance, propagation velocity, and the sig-
nal’s frequency content. In the subsurface, Q values are connected to
lithology, porosity, and pore-fluid characteristics (Wang et al., 2015).
Throughout the manuscript, we make the common assumption of fre-
quency-independent Q within the seismic band, following Liu et al.
(1976) and Kjartansson (1979).
High-resolution seismic data are important for detailed reservoir

description, time-lapse applications, and spatial variation recovery
of porosity, gas content, and pore pressure. However, recorded data
suffer from attenuation and have lower frequency content. To com-
pensate for attenuation, in terms of phase and amplitude, inverse Q
filtering may be applied given a reliable estimate of the subsurface

Q model (Wang, 2006). Such a procedure is gaining increasing
popularity because it offers the promise of increasing the local fre-
quency content of the recorded data (van der Baan, 2012).
In conventional seismic surveys, Q is rarely measured directly

(Blias, 2012). If a well has been drilled, different seismic methods
may be used forQ estimation (Tonn, 1991; Harris et al., 1997). None-
theless, they are inherently confined to a local measurement and do
not encapsulate horizontal variation. Derivation of Q from seismic
data using inversion methods is widely studied and used. These tech-
niques usually belong to one of two groups — wave-equation or
ray-approximation-based. Wave-equation methods (Shen et al., 2015;
Dutta and Schuster, 2016) solve the physically accurate nonlinear
relations, whereas ray-based techniques (Brzostowski and Mcme-
chan, 1992; Quan and Harris, 1997; Hu et al., 2011) assume a linear
relation between measured data and Q−1.
Regardless of their implementation, conventional inversion meth-

ods are based on misfit minimization. It is usually measured in
terms of the difference between recorded and modeled data (or data
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characteristics). In recent studies aiming at Q-model inversion, fre-
quency-based criteria, such as the centroid frequency shift or log
spectral ratio (Wang et al., 2016), are the common choice. For full-
waveform inversion (FWI)-type methods, trying to simultaneously
invert for propagation velocity and Q (Malinowski et al., 2011), the
objective function is minimal discrepancy between modeled and
recorded data. Despite their differences, Q-inversion and FWI-type
methods require knowledge of the source function, which is diffi-
cult to measure or estimate.
In this study, extending earlier work (Shustak et al., 2017), we

suggest a new method that would directly eliminate the need for
source function knowledge. The method is based on back-propagat-
ing recorded data to their known original location using a viscoa-
coustic inverse tomographic equation. For this, we assume the used
velocity model is correct. Such an assumption is often made in the
Q-inversion literature, especially in the ray-based case (see, e.g.,
Quan and Harris, 1997; Wang, 2009; Cavalca et al., 2011; Hu et al.,
2011). The velocity model is either accepted from an outside
method or estimated as a separate step, independent of Q, during
the inversion. The strong coupling between velocity andQ has been
recognized and studied by different authors. For example, Carcione
et al. (2002) describe both as a function of the same complex elastic
modulus, leading to inherent coupling. During wave propagation,Q
affects traveltimes through dispersion. On the other hand, amplitude
losses due to viscoelastic effects are influenced by wavepaths,
which themselves depend on the velocity model (Mulder and Hak,
2009; Hak and Mulder, 2011). As a consequence, it is practically
difficult to simultaneously invert for both fields (Ribodetti et al.,
2000; Kurzmann et al., 2013). Some authors (da Silva et al.,
2017) suggest that a crude Q model may be practically sufficient
for inversion and thus may mitigate the problem. However, for this
study, we will assume that the velocity model is correct and estimate
Q only. In the “Discussion” section, we suggest a more complete
workflow aimed at handling coupling issues.
For back propagation, data are sorted into common-shot gathers.

They are then back-propagated along raypaths calculated using an
acoustic velocity model. Their propagation is compensated for
anelastic losses by using an estimated, or trial, Q model, along the
calculated raypaths. If this Q model is correct, the reconstructed
spectral shapes of all traces originating from the same source will
be similar to one another. Accordingly, we use spectral consistency
of all traces back-propagated to the same origin location as an ob-
jective function. This approach is closely related to the time-reversal
focusing principle (Lellouch and Landa, 2017, 2018; Shustak and
Landa, 2017). It uses the entire source spectrum, eliminates the need
of source function knowledge, and avoids the common Q-inversion
approach of minimizing the discrepancy between characteristics of
recorded and modeled data, which we later show to suffer from low
resolution.
Because the objective function is nonconvex, local optimization

methods are bound to reach a local minima. Therefore, we use ant
colony optimization (ACO), a probabilistic global optimization
technique (Dorigo and Gambardella, 1997) for solving the Q-esti-
mation inverse problem. We present a ray-based, relatively straight-
forward, and simple back-propagation approach. Nonetheless, the
same concepts may be formulated in a wave-equation framework.
In the following, we begin by formulating the inverse tomo-

graphic equation and list assumptions made in its development. We
then use the tomographic equation for source reconstruction and

formulate its spectral consistency as an objective function. We an-
alyze the objective function’s sensitivity to Q and velocity using a
simple two-layer toy model. Then, a global optimization solution to
the inverse problem, the ACO, is briefly discussed. Details of the
method and tuning parameters are described in Appendix A. Using
a 2D cross-hole synthetic example, we demonstrate the inversion
workflow and compare it with a conventional frequency-shift ap-
proach. Results of our suggested method are much closer to the true
model. We also illustrate its quality by displaying reconstructed
spectra and data misfit between recorded and modeled data. For
completeness, we analyze the stability of the suggested inversion
approach as a whole, and we show its superior robustness compared
with a conventional frequency-shift-based method. Finally, we ap-
ply the reconstructed source consistency method to a challenging
2D cross-hole field data from southern Israel.

RECONSTRUCTED SOURCE CONSISTENCY

Source-frequency reconstruction is the basis of the suggested in-
version scheme. In the most general case (Liner, 2012), the relation
between the recorded spectrum RðfÞ, source spectrum SðfÞ, fre-
quency-independent effects G, absorption (or intrinsic attenuation)
effects HðfÞ, receiver response MðfÞ, and extrinsic attenuation
IðfÞ, is

RðfÞ ¼ G · SðfÞ · HðfÞ · MðfÞ · IðfÞ: (1)

Extrinsic attenuation IðfÞ, in contrary to intrinsic attenuation, pre-
serves energy. However, in the presence of subsurface layering
and/or scatterers, recorded wavefields will effectively undergo fre-
quency-dependent extrinsic attenuation (Liner, 2012). In this, case,
energy scattered due to structural elements is disassociated from
recorded wavefronts, despite not being lost to heat.
In this study, we assume, following Quan and Harris (1997), the

following linear relation:

RðfÞ ¼ G · SðfÞ · HðfÞ: (2)

The first used assumption is a flat receiver response within the fre-
quency range of interest, so thatMðfÞ → M and can be incorporated
into G. A second assumption is that extrinsic attenuation effects
are unaccounted for, and all elastic-propagation effects (geometric
spreading, mode conversion, transmission/reflection coefficients,
scattering, etc.,) may be described by the frequency-independent
function G. Assuming a low-loss solid (Q > 5), we can write
(Aki and Richards, 2002)

HðfÞ ¼ e−α0f; α0 ¼
πl
QV

; (3)

with V being the propagation velocity and l being the propagation
distance. Hence, we use the tomographic equation to estimate the
recorded spectrum along a known raypath:

RðfÞ ¼ G · SðfÞ · e−f
R

ray

π
QVdl; (4)

where dl is an incremental traveled distance along the ray andV is the
propagation velocity at dl. It is important to note that this formulation
is ray based, i.e., assuming a single propagation mode of infinite fre-
quency. For this study, we elect to use first-arrivals (P-waves) only.
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Therefore, when applied to seismic data, muting around the first
arrivals must be conducted.
We show the application of the forward tomographic equation on a

single source (Figure 1). The velocity andQ are realistic for a shallow
subsurface environment. The recorded spectrum significantly differs
from the original one, and the effects of highly absorptive layers are
clearly visible.
Because we assume frequency-dependent attenuation depends

solely on anelastic absorption, normalizing the reconstructed source
spectrum eliminates all elastic effects (G). Therefore, the normal-
ized back-propagated source spectrum is

SðfÞ ¼ RðfÞ · ef
R

ray

π
QVdl:(5)

This is the reverse tomographic equation. In other words, SðfÞ can
be regarded as the spectral shape of the reconstructed source. It is a
function of recorded frequency spectrum RðfÞ, attenuation model
Q, and medium velocity V. Velocity also influences source-receiver
raypaths, calculated using acoustic ray-tracing and along which the
tomographic equation 5 is applied. If we assume that the velocity
model is correctly estimated using conventional methods, the only
remaining unknown is the attenuation modelQ. As expected, differ-
ent Q models yield dissimilar reconstructed source spectra, as we
illustrate in Figure 2.
We suggest using the reconstructed source spectrum SðfÞ as an

objective function forQmodel inversion. Let us begin by observing
a single shot record with multiple receivers. Given a correct attenu-
ation model, the reconstructed source spectrum has to be the equal
for all back-propagated recorded traces. This is due to the intangible
time-reversal physical property (Lellouch and Landa, 2018) and
does not induce any assumption regarding the source. However,
it does require the instrumental response of all receivers to be equal
or accounted for, which is inherently assumed in any estimation
method. Quantitatively, similarity between different spectra may

be defined using one of the many known coherency measures. In
this study, we chose to minimize the variance between all back-
propagated traces of the same shot. Because shots may differ from
one another, we only average coherency values over different sources
and do not require them to have the same spectrum. The objective
function is formulated by

EðQÞ ¼
XNshots

s¼1

Xfmax

f¼fmin

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðNs
r − 1Þ

XNs
r

i¼1

�
Ssi ðf;QÞ − 1

ðNs
rÞ
XNs

r

j¼1

Ssjðf;QÞ
�
2

vuut ;

(6)

where SSi ðf;QÞ is the reconstructed source spectrum for the ith
receiver of the sth source,Q is the attenuation model, Ns

r is the num-
ber of receivers for the sth source, and Nshot stands for the total num-
ber of shots. The variance is calculated within a selected frequency
band ffmin; fmaxg, in which there is significant information content.
Choosing a limited frequency band also avoids instability that may
arise from the exponential term in equation 5.
Figure 3 illustrates the sensitivity of the chosen objective function

E in a simple cross-hole acquisition of a two-layer model (Figure 3a).
For this analysis, we varyQ and velocity V. In the forward-modeling
stage, data are generated using the tomographic equation with the
true Q and velocity models. Therefore, the ACO objective function,
which is 1 − EðQ;VÞ1∕4, should be one for the correct model param-
eters. In Figure 3b, we show the objective function’s sensitivity to
different Q value errors. Although the maximal value is indeed ob-
tained at the true Q value, the objective function’s shape is worth
analyzing. First, there are several visible local maxima (pointed by
the arrows), indicating possible difficulties using local optimization

Figure 1. Illustration of the forward tomographic equation for a single source. A source wavelet is shown in (a) and its frequency spectrum in (b).
The velocity model, a 1D model increasing with depth, is shown in (c). Raypaths from the source (magenta star) to receivers (black triangles),
along which the tomographic equation is calculated, are superimposed on the velocity model. TheQ-factor model is shown in (d). The spectrum of
the recorded signal at the receivers shows the dissipative effects of the lower Q layers (e).

Q-factor inversion R701
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methods. In addition, the function changes very slowly in certain di-
rections, which is indicative of a high condition number. Thus, con-
vergence rates of local optimization methods are expected to be low.
Although we assume that the velocity is correct throughout this study,
we also analyze the objective function’s sensitivity to velocity errors
(Figure 3c). From this plot, it can be seen that the objective function is
more sensitive to velocity than Q. Errors of more than 5% of the
velocity turn the method practically useless, whereas such errors
forQ still yield very high objective function values. This observation
is illustrative of the strong Q − V coupling discussed in the “Intro-
duction” section.

For both cases, the objective function does not decrease symmet-
rically with error percentage. Instead, it follows a preferred orien-
tation, more accentuated in the Q sensitivity plot. For this example,
errors with the same sign (either positive or negative) are less penal-
ized by the objective function than errors of inverse sign (one pos-
itive and one negative). Because of the cross-hole acquisition setup,
errors do not cancel out. In surface-based surveys, on the contrary,
errors often compensate for one another if they are of opposing
directions. Based on this simple example, we draw several general
observations — Q inversion using this objective function is chal-
lenging and has a higher chance of success using global optimiza-

Figure 2. Illustration of the normalized backward tomographic equation. The recorded shot’s spectrum, recorded by receivers at different
depths, is shown in (a). Due to different raypaths andQ along them, its shape depends strongly on depth. The recorded spectrum is used for the
backward tomography equation using the (b1) true and (c1) a weakly erroneous Q-factor model. The shape of the spectrum, reconstructed at
the source location, is consistent among all receivers (b2) for the correct Q-factor model (b1). When a wrong model is used (c1), the effect on
the reconstructed spectrum is visible and it becomes incoherent along receivers (c2).

Figure 3. Objective function sensitivity to Q and velocity. A simple two-layers viscoacoustic model, with cross-hole acquisition, is shown in
(a). Sources are denoted by blue asterisks and receivers by black triangles. Assuming the correct velocity model, (b) shows the sensitivity of the
ACO objective function toQ errors. Although the maximal value is obtained at the trueQ values (denoted by the cross), there are several local
maxima, denoted by arrows. In (c), we show the objective function’s sensitivity to velocity, assuming the correct Q model. The objective
function is much steeper, and it does not have local maxima. For (b) and (c), there is a preferred orientation to the objective function — errors
of different signs are more penalized than errors in the same direction.
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tion. Nonetheless, it is bound to fail without an accurate enough
velocity model.

GLOBAL OPTIMIZATION USING ACO

The functional EðQÞ may be used as the objective function in an
inverse problem formulation. It is calculated using the entire spec-
trum of the seismic band. In conventional centroid frequency-shift
or log-spectral ratio tomography, a simple parametric reduction of
this spectrum is used instead. Due to the complexity and nonunique-
ness of the objective function EðQÞ, we advocate the use of global
optimization methods. Although they are more computationally de-
manding and require adequate model parameterization, they can
avoid local extrema and find the overall best solution to the inver-
sion problem. There is a very large variety of global optimization
algorithms, each with its own advantages and limitations. Initially,
inversion was conducted using the very simple and fast simulated
annealing (Landa et al., 1989), but it did not converge within rea-
sonable run times due to objective function complexity. We there-
fore opted for a more advanced method, ACO. However, there are
many other possible metaheuristic approaches, such as genetic al-
gorithms, particle swarm optimization, or neighborhood algorithms
(Sen and Stoffa, 2013), which we expect to perform similarly well.
ACO, derived by mimicking the behavior of foraging ants, was

introduced by Dorigo (1992) and Dorigo and Gambardella (1997)
in its discrete form, and it was later extended to the continuous do-
main (Socha and Dorigo, 2008). Ants start by randomly searching
the area around their nest for food. Once an ant finds a source of
food, it evaluates it and carries some of it back to the nest, while
leaving a pheromone trail indicative of the amount and type of the
remaining available food. The pheromones serve as a tool for indi-
rect communication between ants and enable them to find the op-
timal path to the food source. This behavior has been interpreted as
a probabilistic approach in which pheromone intensity guides the
exploration of the search space. In other words, the probability of
exploring a certain point in the search space depends on previous
objective function satisfaction at that point. Uncharted points in the
search space are randomly explored following a uniform distribu-
tion. A more detailed explanation of the method, as well as tuning
parameters, is found in Appendix A.

SYNTHETIC DATA EXAMPLE

We demonstrate the application of the method on a synthetic cross-
hole example. The acquisition setup, along the underlying velocity
model and representative source-receiver paths, are shown in Fig-
ure 4. It is important to note that the model is structurally complex,
thus inducing extrinsic attenuation effects. We chose to illustrate the
method on a case in which direct source-receiver paths are present, in
contrary to conventional reflection acquisition. The suggested ap-
proach can be applied to any type of survey. Thanks to the inverse
tomographic equation formulation, the only requirement is a com-
puted set of raypaths connecting sources to receivers. However,
for reflection seismology, the reflective layers need to be accurately
positioned in the subsurface to compute such raypath pairs. This in-
duces possible imaging- and interpretation-based errors in the ray-
paths’ calculation. For direct source-receiver acquisitions, such as
cross hole, these error sources do not exist. Raypaths are calculated
directly using the velocity field, which we assume is correct. There-
fore, we elect to illustrate the method using a cross-hole example.

Recorded data were calculated using a full viscoelastic time-do-
main spectral elements scheme, following the approach suggested
by Fan et al. (2016). Despite using the most recent modeling tech-
niques, it is important to remember that accurate anelastic modeling,
especially for lowQ values, is still a subject of ongoing research. As
previously stated, recorded data must be muted around the first
arrivals. Several characteristic shot records, before (Figure 5a) and
after (Figure 5b) such muting, are shown in Figure 5. The complex
velocity model induces nonhyperbolic first-arrival traveltimes. Intrin-
sic attenuation affects wavelet smearing, and we can see extrinsic
attenuation due to model complexity as random-like distortions in
recorded wavefields.
We use muted shot records as input for two different inversions.

The first is based on the reconstructed source consistency, whereas
the second uses a conventional centroid frequency-shift objective
function. In both cases, the optimization procedure was ACO with
the same tuning parameters and run time, and the correct velocity
model was used. The only difference was thus the used objective
function. For the centroid frequency-shift case, we follow Quan and
Harris (1997) and compute the objective function using the frequency
center of mass value. It is calculated using a weighted frequency aver-
age with spectral amplitude as weights and yields a single parameter.
The reconstructed source consistency objective function, on the con-
trary, is calculated using the entire frequency spectrum. In addition,
the frequency-shift objective function operates on differences be-
tween the original (source) and recorded centroid frequency, whereas
reconstructed source consistency is applied to back-propagated traces
and does not require the source function.
Because the source spectrum is required when using the fre-

quency-shift approach, we use the correct one. The Q model, used
for forward modeling and inversion, is a complex structure, consist-
ing of 11 different blocks. There is no initial model because each ant
randomizes its own starting model and the only constraint is the
Q range for each block, taken to be 5–70. After 500 iterations (col-
onies), each containing 20 ants, both solutions converged. In terms
of run time, this is equivalent to a few hours on a single CPU. In
Figure 6, we summarize the Q-inversion results. Using the source-

Figure 4. Synthetic cross-hole test. Sources are denoted by purple
stars and receivers by black triangles. The underlying complex veloc-
ity model causes complex trajectories of source-receiver paths, some
of which are displayed as black lines.

Q-factor inversion R703
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consistency objective function, the inverted model
is very close to the true one. However, when the
conventional centroid frequency-shift measure
is used, the inverted model is clearly erroneous.
Because the only difference between the two in-
versions is the objective function, we conclude
that the reconstructed source consistency objec-
tive function is clearly superior. The parametric
reduction of the frequency-shift approach is insuf-
ficiently sensitive for high-resolution Q-model
inversion. In addition, the source-consistency ob-
jective function does not require source knowl-
edge information. For this comparison, it was
known and correctly used as input for the fre-
quency-shift approach. However, this is an unre-
alistic assumption in real-world applications, and
it might thus induce further errors in the inversion
procedure.
A comparison between the recorded and recon-

structed source spectrum, using the Q model ob-
tained with the reconstructed source consistency
objective function, is shown in Figure 7. Recorded
data have, as expected, a very inconsistent spectral
shape. However, after their reconstruction at their
original location using the invertedQ-model, they
display a much more coherent behavior along
receivers.
Nonetheless, inverted spectra are not perfectly

coherent. This issue has several possible causes.
The first, obvious, one is that the inverted model
is not exactly equivalent to the true model. How-
ever, their difference is not substantial. A second,
more prominent, cause is the well-known mod-
eling inaccuracy. It is especially acute around re-
gions of strong Q contrast, which often appear in

Figure 5. Modeled recorded data for representative shot records at different depths,
(a) before and (b) after muting around first arrivals. Receiver depth ranges from 5 to
50 m. Due to the complex velocity structure, first arrivals are nonhyperbolic. Effects
of intrinsic attenuation can be seen on the wavelet shape. Extrinsic attenuation, induced
by structural inhomogeneity, is visible as random-like wavelet distortions, clearest after
the first-arrival positive (blue) phase. Whereas muting eliminates later events, intrinsic
attenuation clearly affects inversion input data.

Figure 6. The Q-inversion results. The true model, used for creating the data shown in Figure 5, is shown in (a). It is complex and with sharp Q
contrast. (b) The inverted model obtained using reconstructed source consistency is very close to the true model. (c) Using the frequency-shift
objective function, on the contrary, yields a clearly erroneous model despite correct source spectrum information. Because, setting aside the
objective function, all inversion parameters were equal, we conclude the superiority of the reconstructed source-consistency method.
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our blocked model. Third, forward modeling
is performed using an anelastic wave-equation
formulation, whereas inversion is based on a
tomographic ray-approximation approach. More
specifically, extrinsic attenuation rising due to
structural complexity cannot be computed by ray
approximation. Therefore, the inversion formu-
lation does not account for it, and it may thus
compensate for its effect by wrongly altering
the intrinsic attenuation field.
We suggest another approach to evaluating in-

version results. Following FWI principles, we
compare recorded and modeled data, computed
with the Q model inverted for using the recon-
structed source consistency objective function.
It is important to note that because this example
is synthetic, the recorded and modeled data are
computed using the same wave-equation forward
operator. For reference, we also compute mod-
eled data for a background, constant −Q model.
We want to emphasize that although data-misfit
minimization is a viable objective function, it
was not used in our inversion scheme. In Figure 8,
we summarize the comparison. We first show re-
corded data for a single shot at a depth of 20 m
(Figure 8a). In Figure 8b, we show modeled data
computed using the inverted Q model. Data are
very similar to the recorded ones in terms of am-
plitude distribution and arrival traveltimes. In Fig-
ure 8c, we show data modeled with a constant
Q ¼ 40 model. Here, amplitudes are significantly
different, and the entire wavefront is delayed by
approximately 1 ms. This is indicative of a wrong
Q model, influencing dissipation and dispersion.
In Figure 8b2 and 8c2, we show the differences
between modeled and recorded data. Using a con-
stant Q model, the misfit is almost an order of
magnitude more than when the inverted Q model
is used. From this example, we deduce that our
suggested inversion scheme is reliable, because
it is verified and proved successful by an indepen-
dent method.

Figure 7. Recorded and reconstructed spectrums.
(a) The originally recorded spectrum depicts rep-
resentative consecutive shot records, laid one next
to the other. The same shots’ spectrum, after
reconstruction at their location using the estimated
Q model (see Figure 6b), is shown in (b). In the
original spectrum, each shot is very inconsistent in
its spectral shape (among different receivers).
After reconstruction with the inverted Q model,
discrepancy is minimized and the spectra are more
consistent.

Figure 8. Comparison of recorded and modeled data, for a shot at 20 m depth. We show
recorded data in (a). In (b), we display modeled data, obtained with the invertedQmodel
(Figure 6b). Modeled data with a constant Q ¼ 40 model is in (c). Subplots (a-c) are
normalized to the same scale. (b2 and c2) The differences between (b and a) and (c and
a) are shown, accordingly. Again, (b2 and c2) are normalized to the same scale.
Although waveform similarity was not the objective function, we can see an excellent
match when the inverted model is used for modeling. The amplitudes and arrival trav-
eltimes are similar. When a background model is used instead, the amplitude distribution
is significantly different and the wavefront is delayed by approximately 1 ms.
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INVERSION STABILITY

Due to the random nature of global optimization, inversion results
need to be checked for stability. This is especially important due to
the complexity of the objective function, which contains many local
minima. In addition, it is possible that different models might have a
practically equivalent objective function value. Therefore, we per-
form 40 independent ACO runs and analyze inverted models as well
as convergence curves. The same analysis is conducted for the recon-
structed source consistency and frequency-shift objective functions.
All runs were conducted with the same velocity model and ACO
parameters (see Appendix A). Figure 9 summarizes these results. In
Figure 9a, we show the stability of the inverted models using the
reconstructed source consistency objective function. We take the
pixel-by-pixel standard deviation of the inverted Q models (across
40 different ACO runs) and divide it by the mean estimated model.
The resulting image is a good measure, in percentage, of the inverted
models’ stability. Setting aside the poorly covered top layer, the stan-
dard deviation is less than 10% for all blocks and approximately
5% average over the entire model. This indicates a stable inversion

procedure, despite the many difficulties previously discussed. Aver-
age convergence using reconstructed source consistency behaves
(Figure 9b) as expected, with a fast initial improvement, curbing with
time, and eventual convergence to a stable solution. However, by
looking at its standard deviation, we can see that the large number
of iterations is required to assure that all 40 ACO instances have in-
deed finished converging. When the frequency-shift objective func-
tion is used instead, stability issues arise. Inverted models (Figure 9c)
may suffer from up to 30% standard deviation in certain areas, and
inversion does not converge (Figure 9d). Despite an initial improve-
ment, the objective function does not reach a stable solution. This is
consistent with the high variation of the inverted models. Overall, we
conclude the superiority of the reconstructed source consistency in
terms of inverted models and their stability.

FIELD-DATA EXAMPLE

We tested the application of the method on a dense cross-hole survey
acquired in the shallow subsurface section. Thewells were interchange-
able, each acting as source and receiver boreholes. We illustrate the

Figure 9. Stability and convergence analysis of the ACO method using different objective functions — reconstructed source consistency and fre-
quency shift. For both cases, 40 different ACO runs were conducted, and their results and convergence curves analyzed. In (a), using reconstructed
source consistency, we show the standard pixel-wise deviation, across different ACO runs, of invertedQ models, normalized by the mean estimatedQ
valuemodel. Except the upper layer, which is poorly covered, the standard deviation is less than 10% in all areas, and its average is approximately 5%. In
(b), we show themean convergence graph of the reconstructed source-consistency inversion, with error bars indicating the standard deviation. The fastest
increase is during the first 50 iterations (colonies), and the subsequent convergence is very slow. However, the standard deviation decreases, indicating
that more and more different ACO instances are converging to a stable solution. In (c and d), we repeat the procedure with the conventional frequency-
shift objective function. In this case, model standard deviation may reach almost 30% in certain areas and the objective function does not seem to
converge, despite improving from the initial values. This indicates an unstable objective function, explanatory of high variance of inverted models.
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survey’s layout in Figure 10, along with the underlying velocity field
estimated using conventional traveltime tomography. Because there
were technical problems with some of the shots due to coupling/trigger
issues, only acceptable source-receiver pairs are shown. In Figure 11,
we show several characteristic shot records after a very coarse muting
around the first arrivals. Since used downhole geophones have a uni-
axial direction (z) of measurement, polarity reversal occurs. However,
as the suggested approach operates solely in the frequency domain, it
does not have any effect on the results. In the time domain, on the con-
trary, it could influence inversion methods based on time-domain am-
plitudes, such as rise time or amplitude decay (Tonn, 1991).
In Figure 12, we show inversion results using this data set.

Although the data are noisier and limited to fewer than 200 traces,
inversion does converge to a stable solution (Figure 12a). The overall
trend is of Q strongly increasing with depth, which is consistent with
the compaction model of loose sands present in the area. There are
some mild lateral heterogeneities, as may be expected in the shallow
subsurface section. We compare inversion results to a 1D Q model
extracted at the left borehole using conventional check-shot frequency
shift. For such an analysis, the method is very stable and reliable. In-
version is unreliable near the borehole due to coverage issues. There-
fore, we compare the 2D result at a distance of approximately 5 m
from the well. Taking into account the overall slope of the inverted
model, the two results are close. By observing the recorded and re-
constructed spectrum (Figure 13), we may evaluate the quality of the
estimated model in a different way. First, the reconstructed spectrum
has, as expected, a much higher frequency content. For most shots, the
reconstructed spectral shape is rather consistent along different receiv-
ers. When it is not the case, it seems that discrepancies arise due to
specific traces, which have an outlying spectral behavior before in-
version. Therefore, we are confident that the estimated Q model,
given the data quality and coverage, is reliable.

DISCUSSION

In this study, we suggest using the reconstructed source frequency
consistency as an objective function for an inverse problem formu-
lation of Q-factor estimation. It uses the entire spectrum rather than
its parametric reduction, does not require the source function, and is
based on simple data preprocessing. The used ob-
jective function’s originality is that it avoids the
conventional inversion approach of minimizing
the discrepancy between recorded and modeled
data, or some of their characteristics. Instead, it
only incorporates self-consistency of back-propa-
gated data, following the time-reversal principle.
Finding its minimal value is formulated as a
global optimization problem, solved using the
ACO approach. It is also worth noting that a local
optimization solution to the inversion problem can
be formulated using a similar objective function,
but it is prone to local minima convergence and
dependency on the often poor initial Q model.
This approach is currently under research and
shows promising results.
A main assumption made using the suggested

method is the correct velocity model, which is
used for raypath calculation. As we show, Q es-
timation might suffer greatly if an incorrect
velocity model is used. However, the correct

velocity assumption is commonly made. The reason is that a joint
estimation of the two fields is practically difficult due to their in-
herent coupling. Therefore, we opt for an iterative, step-by-step ap-
proach, separating velocity from attenuation estimation.
The suggested approach is based on a ray-approximation

tomographic equation. Although it has many practical benefits, it
induces certain limitations that are important to recognize. These
shortcomings are shared by all Q-tomography methods. First, such

Figure 10. Field-data acquisition. Sources are denoted by purple
stars and receivers by black triangles. The source and receiver bore-
holes have been inverted during acquisition to increase coverage.
The P-wave velocity model displayed in the background was esti-
mated using conventional traveltime tomography and was sub-
sequently used for source-receiver path calculation (full/dashed
black lines, according to the well of origin).

Figure 11. Shot records excited at different depths in right borehole (see Figure 10),
coarsely muted around the first arrivals (P-waves). The moveout of the first arrivals is
very complex due to the underlying velocity field. Due to the uniaxial (z-direction) record-
ing of the downhole geophones, polarity reversal (marked, for exemplification, by a green
ellipse) occurs in all records.
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a formulation cannot account for extrinsic frequency-dependent at-
tenuation caused by elastic propagation in a heterogeneous subsur-
face. In the presence of layers or scatterers, different wavelengths
might behave dissimilarly, thus inducing extrinsic attenuation. The
ray approximation is incapable of accounting for these effects.
Therefore, an inversion scheme based upon it will wrongly alter
the anelastic attenuation model Q in compensation. Second, as the
ray approximation is also acoustic, solely single-mode seismic waves
may be used. In this study, we limited ourselves to the first arrivals
(P-waves). Set aside the information loss, it also requires muting the
data around the first arrivals. Third, it commands application on
smooth velocity models only, because ray tracing induces errors
or, worse, does not reach its targets under the presence of complex

structures and sharp contrasts. We reiterate that these limitations are
shared by most, if not all, conventional Q-tomography methods.
Nonetheless, using a wave-equation approach is practically difficult.

Precisely incorporating anelastic effects into the modeling scheme,
being forward or backward, is still a subject of ongoing research be-
cause it suffers from instability (Yang et al., 2016). Conventional meth-
ods induce at least several percent errors (Fan et al., 2016) and further
deteriorate for low Q values, such as the ones handled in this study.
The error is not necessarily symmetric for the forward and back propa-
gation. In addition, computation times are significantly increased,
especially when relatively high precision is required. Nonetheless,
time-harmonic methods (Operto et al., 2007) may be used to accurately
and efficiently perform the calculations, but they require extensive

memory. On the contrary, using a ray-approxima-
tion approach, paths need to be calculated only
once using the velocity model. Subsequently apply-
ing different Q models is extremely fast because it
amounts to matrix (raypaths) by vector (Q−1

model) multiplication. For wave-equation methods,
the full propagation has to be conducted for every
differentQ model. Because global optimization re-
quires numerous objective function estimations, a
wave-equation approach would be impractical
given our computational means. Finally, the fact
that wave equation propagation can handle struc-
ture-induced extrinsic attenuation may be a practi-
cal difficulty. Whereas ray tracing requires an
acceptable smooth velocity model, the wave equa-
tion requires an accurate description of the subsur-
face in terms of density and elastic parameters, a
muchmore difficult task. Moreover, such a descrip-
tion has to accurately represent contrast to correctly
predict amplitudes and their frequency dependence,
and coupling problems will arise if such a represen-
tation is incorrect.
Global optimization has it downsides, and the

used algorithm is no different. It is more computa-
tionally demanding and harder to reproduce be-
cause it involves random processes. Due to high
computational requirements, it is effectively limited
by the complexity of the models it can represent.
This restriction is especially noticeable in cases
of laterally varying 3Dmodels. By increasing com-
putational resources, more detailed models can be
inverted for. Notwithstanding, in our suggested
approach, Q is estimated only after a velocity
model, and possibly structural image, has been
constructed. Using an interpretation-based process,
it is possible to represent the Q field with a rela-
tively small amount of regions, which can be then
inverted for using global optimization. Of course,
stability and convergence remain a problem-depen-
dent issue, but we have shown positive signs of a
stable inversion.
Therefore, we suggest using this method as an-

other step in an iterative process aiming for a cor-
rect anelastic representation of the subsurface.
The first stage would be conventional velocity
analysis, followed by an interpretation-driven

Figure 12. (a) Inverted Q model using field data. Coverage issues are clearly present,
and not all the area between the boreholes is resolved. However, a strongly increasing
with depthQ is visible. Lateral heterogeneity is not negligible, but it is much less promi-
nent than the depth variation. The model estimated at the dotted blue line location is
compared with a conventional checkshot (1D) frequency-shift analysis (b). Taking into
account the apparent slope of the model, the difference between the well log and the
sliced inversion result, located at 5 m distance, is reasonable.

Figure 13. Recorded and reconstructed spectrums. The 100 Hz line is marked in both
using a dashed line. (a) The recorded spectrum contains significant low-frequency
(<100 Hz) energy, and there is a large inconsistency between spectral shapes among
different receiver traces of each shot. After source reconstruction using the inverted
Q model (Figure 12), (b) the spectral shapes have a higher frequency content and
are more consistent. However, some local discrepancies, visible in the original recorded
spectrum, are not resolved by the inversion.
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Q skeleton model construction. Then, our suggested method would
be applied. At this point, reasonable velocity and Q models would
be available. They may be used as a basis for viscoelastic FWI,
jointly with a density model if present. Alternatively, it would be
possible to first improve velocity model precision by incorporating
second-order corrections due to anelastic dispersion. Subsequently,
a refined Q model will be estimated on the basis of new raypaths
calculated from the updated velocity model, and so forth.
In this study, we aim at illustrating the advantages of recon-

structed source consistency objective function, and therefore we
chose direct source-receiver paths examples. However, its extension
to surface data and reflection events should be the focus of future
research. As inversion is formulated on the basis of raypaths, the
only difference in its application would be constructing source-
receiver paths as a combination of two rays — source to reflection
point and reflection point to receiver. This requires a correct esti-
mation of reflection horizons. Naturally, interpretation errors are
possible, and velocity errors would see their impact enhanced.
An additional limitation of using the method with conventional re-
flection data is the underlying Q model complexity, which is diffi-
cult to represent using a relatively small number of parameters.
However, as the method would be applied after initial structural
imaging, an interpretation-based Q model parameterization could
again prove useful. For most cases, tens to several hundreds of re-
gions, each with its ownQ value, could probably be reliably inverted.
At this point, resulting models could be a basis for anelastic FWI, or
first iteratively recomputed with anelastic corrections to the velocity
and raypath estimation, followed by a new Q model inversion.

CONCLUSION

In this study, we suggest using the reconstructed source-fre-
quency consistency as a novel objective function for an inverse
problem formulation of Q-factor estimation. It uses the entire spec-
trum rather than its parametric reduction, does not require prior
knowledge of the source function nor its inversion, and is fully au-
tomatic once basic preprocessing has been applied. It is formulated
as a global optimization problem, solved using the ACO approach.
The source function, useful for other procedures, can be reliably
obtained as a byproduct of the method.
Using a complex synthetic cross-hole example, we show the ac-

curacy, stability, and convergence of our suggested approach in
recovering a strongly varying Q-model. The same inversion scheme
fails when a conventional centroid frequency shift objective function
is used, despite using the correct additional information of source
spectrum. We thus conclude the superiority of the reconstructed
source-frequency consistency objective function. When applied to
a challenging field cross-hole example, it performs well even under
the limitations of scarce data and mediocre coverage. Inversion re-
sults are compared with a conventional, reliable check-shot 1D
model, and are highly compatible. In both examples, the recon-
structed spectra consistency is indicative of estimated model quality.
The suggested method makes several assumptions. First, it as-

sumes a known and correct underlying velocity model. Second, it
uses a ray approximation to the wave equation. This limits its ability
to compute raypaths in complex models, and it cannot correctly take
into account extrinsic attenuation. Finally, due to the global optimi-
zation parameterization, it is limited in the detail of models it can
invert for. On the other hand, it successfully converges despite a com-
plex, multimodal, and velocity-coupled objective function.

Although both illustrative examples are of cross-hole acquisition,
the method may be applied to any acquisition geometry in which
source-receiver paths are known, e.g., reflection seismology. Naturally,
complexity would be increased and interpretation-based procedures
would have to be used to build reasonable Q skeleton models. None-
theless, we believe that the suggested approach should be used as part
of an iterative process, either for cross hole or surface acquisition,
whose results may be an initial model for anelastic FWI.
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APPENDIX A

ANT-COLONY OPTIMIZATION

The ant-colony system optimization was first introduced by
Dorigo (1992) and Dorigo and Di Caro (1999) as a method for solv-
ing complicated combinatorial optimization problems, and it was
later extended to continuous domains (Socha and Dorigo, 2008).
It is a probability-driven method that was inspired by observing
ant foraging behavior. There are many variations of this method
(Dorigo and Gambardella, 1997; Stützle and Hoos, 2000), all based
on the same principle. It incorporates two basic steps that are been
iteratively applied until convergence:

1) generating a set of solutions
2) pheromone update.

The first step consists of generating a set of C solutions (C is the
number of ants) Sc, drawn from the full search space SP. The sol-
ution is generated following the probability density function (PDF)
PðSPÞ. In the first iteration, PðSPÞ is set to be uniform; hence, the
search is random. After the first set of solutions is generated, pher-
omones, and accordingly PðSPÞ, are updated. This step’s goal is to
increase the pheromone density around promising solutions and
decrease their level around poor solutions. Thus, the probability
to search around the true solution will increase in subsequently gen-
erated models. Such a goal is obtained by introducing pheromones
τij, which influence PðSPÞ. They are updated for each iteration
(known as a colony), according to the following rule:

τij ¼
� ð1 − ρÞτij þ ρΔt if τij ∈ sB;
ð1 − ρÞτij otherwise: (A-1)

Updates depend on Δt, which is an objective function measure, and
an evaporation preset parameter ρð0 ≤ ρ ≤ 1Þ. The objective function
used in this study was 1 − EðfÞ1∕4, introduced in equation 6. It is
important to note that Δt influences the pheromone τij is the condi-
tion τij ∈ sB is fulfilled, meaning that the pheromone is associated
with the best model SB. There are two common approaches in choos-
ing SB. The first is the “best-so-far approach,” which sets SB as the
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best overall solution, in terms of objective function, found since the
beginning of the run. The second approach is the “iteration-best ap-
proach,” which sets SB as the best solution obtained from the current
colony (iteration). The evaporation parameter ρ controls the trade-off
between keeping the best model only, for a single next colony
(ρ ¼ 1), and completely disregarding the objective function and ap-
plying random search (ρ ¼ 0). In this study, we chose a relatively
high value of ρ ¼ 0.3 to quickly extinguish poor solutions.
The PDF of drawing a model Cij, after the pheromone update

stage, is given by

PðCijÞ ¼
½τij�α½ηðCijÞ�βP
Cij
½τij�α½ηðCijÞ�β

; ∀ Cij ∈ SP; (A-2)

where η represents a priori information about the search space.
Parameters α and β are positive factors used for trade-off between
a priori knowledge and pheromone, or objective function-based, in-
formation. As in many heuristic optimization methods, and in par-
ticular in probabilistic global optimization ones, parameter choice is
crucial and is a problem-dependent issue. In this case, we had nei-
ther a priori information about the solution (expect lower and upper
bounds) not any heuristic preference, and thus set η; α; β as one.
Finally, we incorporate a random, pheromone-independent model

generation option. In this study, 10% of model generations are drawn
randomly from a uniform distribution. The goal of this modification
is to allow for uncharted, remote areas of the objective function to be
explored.
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